Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Language
Year range
1.
Biomolecules & Therapeutics ; : 83-91, 2020.
Article | WPRIM | ID: wpr-830922

ABSTRACT

Tryptamines are monoamine alkaloids with hallucinogenic properties and are widely abused worldwide. To hasten the regulations of novel substances and predict their abuse potential, we designed and synthesized four novel synthetic tryptamine analogs: Pyrrolidino tryptamine hydrochloride (PYT HCl), Piperidino tryptamine hydrochloride (PIT HCl), N,N-dibutyl tryptamine hydrochloride (DBT HCl), and 2-Methyl tryptamine hydrochloride (2-MT HCl). Then, we evaluated their rewarding and reinforcing effects using the conditioned place preference (CPP) and self-administration (SA) paradigms. We conducted an open field test (OFT) to deter-mine the effects of the novel compounds on locomotor activity. A head-twitch response (HTR) was also performed to characterize their hallucinogenic properties. Lastly, we examined the effects of the compounds on 5-HTR1a and 5-HTR2a in the prefrontal cortex using a quantitative real-time polymerase chain reaction (qRT-PCR) assay. None of the compounds induced CPP in mice or initiated SA in rats. PYT HCl and PIT HCl reduced the locomotor activity and elevated the 5-HTR1a mRNA levels in mice. Acute and repeated treatment with the novel tryptamines elicited HTR in mice. Furthermore, a drug challenge involving a 7-day abstinence from drug use produced higher HTR than acute and repeated treatments. Both the acute treatment and drug challenge increased the 5-HTR2a mRNA levels. Ketanserin blocked the induced HTR. Taken together, the findings suggest that PYT HCl, PIT HCl, DBT HCl, and 2-MT HCl produce hallucinogenic effects via 5-HTR2a stimulation, but may have low abuse potential.

2.
Biomolecules & Therapeutics ; : 122-129, 2017.
Article in English | WPRIM | ID: wpr-32632

ABSTRACT

A diversity of synthetic cathinones has flooded the recreational drug marketplace worldwide. This variety is often a response to legal control actions for one specific compound (e.g. methcathinone) which has resulted in the emergence of closely related replacement. Based on recent trends, the nitrogen atom is one of the sites in the cathinone molecule being explored by designer type modifications. In this study, we designed and synthesized two new synthetic cathinones, (1) α-piperidinopropiophenone (PIPP) and (2) α-piperidinopentiothiophenone (PIVT), which have piperidine ring substituent on their nitrogen atom. Thereafter, we evaluated whether these two compounds have an abuse potential through the conditioned place preference (CPP) in mice and self-administration (SA) in rats. We also investigated whether the substances can induce locomotor sensitization in mice following 7 days daily injection and challenge. qRT-PCR analyses were conducted to determine their effects on dopamine-related genes in the striatum. PIPP (10 and 30 mg/kg) induced CPP in mice, but not PIVT. However, both synthetic cathinones were not self-administered by the rats and did not induce locomotor sensitization in mice. qRT-PCR analyses showed that PIPP, but not PIVT, reduced dopamine transporter gene expression in the striatum. These data indicate that PIPP, but not PIVT, has rewarding effects, which may be attributed to its ability to affect dopamine transporter gene expression. Altogether, this study suggests that PIPP may have abuse potential. Careful monitoring of this type of cathinone and related drugs are advocated.


Subject(s)
Animals , Mice , Rats , Dopamine Plasma Membrane Transport Proteins , Gene Expression , Nitrogen , Reward
3.
Biomolecules & Therapeutics ; : 578-585, 2017.
Article in English | WPRIM | ID: wpr-10724

ABSTRACT

Recently, there has been a rise in the number of amphetamine derivatives that serve as substitutes for controlled substances (e.g. amphetamine and methamphetamine) on the global illegal drug market. These substances are capable of producing rewarding effects similar to their parent drug. In anticipation of the future rise of new and similar psychoactive substances, we designed and synthesized four novel amphetamine derivatives with N-benzyl, N-benzylamphetamine HCl (NBNA) substituent on the amine region, 1,4-dioxane ring, ethylenedioxy-amphetamine HCl (EDA), methyl, para-methylamphetamine HCl (PMEA), and naphthalene, 2-(aminopropyl) naphthalene HCl (2-APN) substituents on the phenyl site. Then, we evaluated their abuse potential in the conditioned place preference (CPP) test in mice and self-administration (SA) test in rats. We also investigated the psychostimulant properties of the novel drugs using the locomotor sensitization test in mice. Moreover, we performed qRT-PCR analyses to explore the effects of the novel drugs on the expression of D1 and D2 dopamine receptor genes in the striatum. NBNA, but not EDA, PMEA, and 2-APN, induced CPP and SA in rodents. None of the test drugs have produced locomotor sensitization. qRT-PCR analyses demonstrated that NBNA increased the expression of striatal D1 dopamine receptor genes. These data indicate that NBNA yields rewarding effects, suggesting potential for abuse. Continual observation for the rise of related substances is thus strongly encouraged.


Subject(s)
Animals , Humans , Mice , Rats , Amphetamine , Controlled Substances , Parents , Receptors, Dopamine , Reward , Rodentia
4.
Biomolecules & Therapeutics ; : 590-596, 2015.
Article in English | WPRIM | ID: wpr-192179

ABSTRACT

The emergence and use of synthetic cannabinoids have greatly increased in recent years. These substances are easily dispensed over the internet and on the streets. Some synthetic cannabinoids were shown to have abuse liability and were subsequently regulated by authorities. However, there are compounds that are still not regulated probably due to the lack of abuse liability studies. In the present study, we assessed the abuse liability of three synthetic cannabinoids, namely JWH-030, JWH-175, and JWH-176. The abuse liability of these drugs was evaluated in two of the most widely used animal models for assessing the abuse potential of drugs, the conditioned place preference (CPP) and self-administration (SA) test. In addition, the open-field test was utilized to assess the effects of repeated (7 days) treatment and abrupt cessation of these drugs on the psychomotor activity of animals. Results showed that JWH-175 (0.5 mg/kg), but not JWH-030 or JWH-176 at any dose, significantly decreased the locomotor activity of mice. This alteration in locomotor activity was only evident during acute exposure to the drug and was not observed during repeated treatment and abstinence. Similarly, only JWH-175 (0.1 mg/kg) produced significant CPP in rats. On the other hand, none of the drugs tested was self-administered by rats. Taken together, the present results indicate that JWH-175, but not JWH-030 and JWH-176, may have abuse potential. More importantly, our findings indicate the complex psychopharmacological effects of synthetic cannabinoids and the need to closely monitor the production, dispensation, and use of these substances.


Subject(s)
Animals , Mice , Rats , Cannabinoid Receptor Agonists , Cannabinoids , Cannabis , Hand , Internet , Models, Animal , Motor Activity
SELECTION OF CITATIONS
SEARCH DETAIL